
07/20128

xxxxxxxxx

Like many Flash developers I’ve found myself (re)
turning to the world of JavaScript – or perhaps 
you could say “HTML5” development. 

This article contains some selected tricks to help 
adapt your ActionScript knowledge to further your Ja-
vaScript skills. There are many ways of using JavaS-
cript, and many libraries to help you out, so it’s not so 
bad if you approach it in the right way.

Development Environments
Let’s take a look at editors/development environments 
first. 

This is a subjective area; it’s fair to say it’s a mixed 
bag out there. Of all the editors/IDE’s out there, my per-
sonal vote goes to Netbeans – especially for larger proj-
ects. It offers:

• 	 Auto completion, including jQuery
• 	 Eclipse style documentation for functions
• 	 Function and field outlining
• 	 Function and code folding/collapsing
• 	 Refactoring
• 	 Great HTML/5 and CSS support
• 	 JSLint (as a plugin)

Best of all, like FlashDevelop, it’s free.
Some others you might consider are:

• 	 Sublime Text
• 	 Aptana Studio
• 	 Dreamweaver

There are also plenty of upcoming browser based ed-
iting environments, not least of which is JSBin, built by 
Remy Sharp and the very promising Brackets by Ado-
be.

I’m not sure any of them hit the same fine notes as 
FlashDevelop, which was and is my favourite editor for 
ActionScript3 projects, but I’m sure things will get better.

Enough about tools though. Let’s focus on the lan-
guage.

Why JavaScript?
HTML5 is a hot topic at the moment, but let’s face it, 
most of the good stuff is accessed through JavaScript. 
Indeed, there are some stunning JavaScript examples 
out there, as people are squeezing the best from the 
language/browsers. 

It’s been interesting to see how JavaScript has 
changed its ‘image’ over the last few years. From be-
ing associated with ugly effects and tiresome popup 
windows, now it is key to getting the most out of “HT-
ML5” and associated APIs, and the browser itself has 
become an increasingly powerful programming envi-
ronment.

ActionScript to JavaScript: 
Finding your feet

Extend your skill set by applying your knowledge of 
ActionScript to JavaScript and HTML5.

What you will learn...
• 	 How to apply your knowledge of ActionScript to JavaScript
• 	 JavaScript libraries that will simplify development
• 	 Recommended development tools and IDEs
• 	 Efficient methods of animating objects

What you should know...
• 	 Familiarity with ActionScript. Preferably ActionScript 3.0
• 	 HTML and the Document Object Model



en.sdjournal.org 9

ActionScript to JavaScript: Finding your feet

Setting up…
Let’s start at the beginning
The first things you’ll want to add to your scripts are 
some very useful JavaScript libraries that make life eas-
ier scripting across the various browsers out there. I’ll 
quickly mention a few utilities that I use commonly…. 
You can use templates such as HTML5 BoilerPlate, 
which is a “template for a fast, robust and future-safe 
site”. http://html5boilerplate.com It includes much of the 
following utilities.

Modernizr
Modernizr contains some handy scripts that can check 
for the HTML5 ability of any browser, as well as a few 
other goodies. I’d recommend it’s one of the first scripts 
you add to a page:

<script src=”http://cdnjs.cloudflare.com/ajax/libs/
modernizr/2.5.3/modernizr.min.js”></script>

Once added, you can easily check for features like so:

var isCanvasAvailable = Modernizr.canvas; 
//this will return a boolean value

jQuery
jQuery is almost ubiquitous these days. It’s described 
as a “write less, do more” framework and it is indeed 
very useful for speeding up the workflow. Admittedly, in 
the wrong hands you can end up with nested functions 
within nested functions. That said, jQuery is great, and 
can make life much easier across browsers. Along with 
Modernizr, I’d recommend it’s the first thing you add in 
your header as a default.

There’s enough documentation elsewhere on jQuery 
but suffice it to say it comes into its own when you need 
to access the DOM, animate elements and create call-
backs for events.

Add it to the page like so:

<script src=”http://ajax.googleapis.com/ajax/libs/
jquery/1/jquery.min.js”></script>

Underscore
Underscore is a “utility-belt library” with a suite of func-
tions for JavaScript – it can make life much easier script-
ing for the many different browsers and it’s intended for 
functional programming:

<script src=”http://documentcloud.github.com/
underscore/underscore-min.js”></script>

Making ourselves a little more at home…
Here’s an easy but very useful utility, which utilises un-
derscore.js, and that you can use to make yourself feel 

ADV



07/201210

xxxxxxxxx

more at home: a trace function for logging and de-
bugging. I was shown this trick by another developer I 
worked with, and I’ve found it very useful. You can add 
this to your own utilities functions file if you wish.

var trace = function (obj) {
  if (!_.isUndefined(window.console) && 
     !_.isUndefined(window.console.log)) {
    window.console.log(obj);
  }
}
The console.log() method is the browser/JavaScript 
equivalent of trace. It’ll write out strings and objects to 
the debugging console. The problem is, it’s not all that 
consistent across browsers.

Now we can at least consistently write to the console, 
and using the familiar trace() method. It all helps…! 

Simply call it like you would in ActionScript:

trace(“hello”); //trace a string
trace(myObject); //trace an object

ActionScript coding techniques mapped to 
JavaScript
ActionScript and JavaScript share an ECMAScript 
heritage, so there are indeed ways of scripting like Ac-
tionScript in JavaScript. Contrary to popular belief it 
is possible to create classes, public/private variables 
and even constructors once you get to grips with 
JavaScript. Although it will feel “quirky”, to say the  
least…

Classes and Object Oriented JavaScript
Defining classes is as easy as defining functions, be-
cause it is practically the same thing. After creat-
ing a function, you can make instances of it. The ex-
ample below creates a Particle class with public 
variables called x and y. After that we create two in-
stances of the Particle class with some other 
values.

Note
I use the same code conventions as Actionscript: Class-
es should be UpperCased, functions/variables should 
be lowerCased and constants should be ALL_CAPS. 
Also I sometimes use an underscore before private vari-
ables.

Here’s an example Particle “class”, which has pri-
vate variables and public functions (Listing 1).

By using the this keyword we’re essentially saying 
for example that this.x is a public variable. 

To make a variable private we would limit it to the 
scope of the function by declaring it like so:

var name

Listing 1. xxxxxxx

Particle = function(x,y,0xFF0000) {

  // Default to 0 if parameter(s) isn't defined

  this.x = x || 0; 

  this.y = y || 0;

 

  trace("Particle created at x: " + this.x + 

    " and y: " + this.y);

 

  var _name = "particleName";

 

}

 

// create instance of Particle

var particle = new Particle(100,100, 0xFF0000); 

var blueParticle = new Particle(100,100, 0x0000FF);

 

trace(particle.colour);

trace(blueParticle.x); 

Listing 2. xxxxxxxxxxxxxx

Particle = function(x,y) 

{

  // Default to 0 if parameter(s) isn't defined

  this.x = x || 0; 

  this.y = y || 0;

 

  trace("Particle created at x: " + this.x + 

    " and y: " + this.y);

 

  function getRandomColour()

  {

    return Math.random * 0xFFFFFF;

  }

}

 

var Particle = new Particle(100,100, 0xFF0000);

trace(particle.x); // returns x position

trace(particle.getName()); // returns name

 

// not possible :

// error in console; property does not exist, 

because function is private.

trace(particle.getRandomColour());

// error in console; property does not exist, 

because variable is private.

alert(particle._name); 



en.sdjournal.org 11

ActionScript to JavaScript: Finding your feet

Private variables can be declared with the var key-
word inside an object, and can only be accessed by 
private functions and privileged methods in the scope. 
You might also want to add an underscore to easily 
identify private variables, like so:

var  _name

This is an example of encapsulation in JavaScript – 
that is, allowing an object to group both private and 
public members under a single name, and restricting 
access to other objects.

Public functions
Here’s how you’d go about making a public function 
within the Particle class:

this.getName = function(){
     return _name;
}

This could then be called from an instance:

particle.getName();

Private Functions
Here’s how we’d go about creating a private function 
(Listing 2). 

By using these principles, possibly in combination 
with namespaces (which we’ll look at next)  you can 
create clean JavaScript code.

ActionScript3 style “Packages” in JavaScript 
using Namespaces
In JavaScript it can be easy to run into conflicts with 
function and variable names because of unwanted du-
plicates. Using namespaces can help to prevent those 
conflicts. 

There’s no dedicated syntax for namespaces in the 
language, but we can get the same benefits by creat-
ing a single global object and adding all our objects and 
functions to the object.

You can also use the same naming conventions for 
namespaces as in ActionScript. Suppose we want to 
use a namespace like com.mycompany.project. We 
can accomplish this using this approach.

var com = com || {};
com.mycompany = {};
com.mycompany.project = {};

….or something like this:

var com = com || {
  mycompany: {
    project: {}
  }
}; 

Compared to AS3 this is very cumbersome and hard 
to maintain as your code expands. However, here’s an-
other utility function that would let you do the same 
thing using a single line of code: Listing 3.

You could then create a namespace like this with one 
line of code: Listing 4.
Using this approach requires less typing and the result-
ing code also looks less verbose. Some JavaScript li-
braries, such as Dojo, provide their own namespace 
utility functions: http://dojotoolkit.org.

Now it looks a little more like Actionscript 3, only there 
are no imports. This works in all browsers.

Type Declaration
You can’t declare a variable’s data type like we can 
in ActionScript. This is because JavaScript is loosely 
typed, so…

Listing 3. xxxxxxxxx

function namespace(namespaceString) {

  var parts = namespaceString.split('.'),

parent = window,

    currentPart = '';    

 

  for(var i = 0, length = parts.length; i < length; 

i++) {

    currentPart = parts[i];

    parent[currentPart] = parent[currentPart] || {};

    parent = parent[currentPart];

  }

 

  return parent;

}

Listing 4. xxxxxxxxx

var project = namespace(‘com.mycompany.project’);

project.Particle = Particle = function(x,y,0xFF0000) 

// create class inside package

{

  this.x = x || 0;

  this.y = y || 0;

  var _name = “particleName”;

 

}

var myParticle =  new project.

Particle(100,200,0xff0000);

trace(myParticle.x); 



07/201212

xxxxxxxxx

var myNumber:Number 

…would simply be written as…

var myNumber

In ActionScript if you tried to assign it as anything oth-
er type than Number it would throw an error, where-
as with JavaScript you could go on to use it to store 
a string. This can be a pain when trying to remember 
what type of variable is being passed to a function. 
It can be a good idea to remind yourself what type a 
variable is with a small comment before the arguments 
in the function declaration:

function (/* object */ options){
  // function logic would go here
}

Constants
Javascript has a const keyword too, you could use it 
instead of var. It declares a constant: a variable whose 
value can’t be changed after it’s initialised. However, 
bear in mind this is not implemented in Internet Explor-
er, so it is of limited use.

Extending Classes
You can even extend your JavaScript classes. This is 
how might go about creating a class that extends the 

Particle class. We’ll call it FireParticle.

FireParticle = function(x,y) {
                
  Particle.call( this, x, y );
  trace(“this particle is a fire particle!”)
             
}

Calling the super constructor is really easy. All you 
have to do is use the call() method.

In the code above, what we are asking the Javas-
cript engine to do is to execute the Particle() meth-
od (base constructor) using the FireParticle instance 
as the this context. We are then forwarding the argu-
ments to the super constructor for use. You could also 
use Javascript’s apply() method to invoke a base con-
structor and pass in the context in which it will execute.

There’s not really that much more involved in extend-
ing classes in Javascript, but there’s how it’s done.

Using prototype
As with earlier versions of ActionScript, the prototype 
object of JavaScript makes it possible to add custom 
properties/methods to all instances of an object. You 
have to reference the keyword prototype on the object 
before adding the custom property to it, and this prop-
erty is instantly attached to all instances of the object. 
Let’s apply that to our FireParticle class: Listing 5.

Adding event listeners
In JavaScript you can add event listeners just as you 
would do for objects in AS3: Listing 6.

You can similarly use the removeEventListener() 
method to remove an event listener that has been reg-
istered with the addEventListener() method.

One big drawback with the above code is that Internet 
Explorer versions older than 9 are not supported and 
you’d need to use addEvent() instead. This is a pain… 
For a solution that works across browser I tend to use 
jQuery, with this syntax:

$(“#div1”).bind(“click”, onClick);

function onClick( ev ){
  trace(ev.target);
}

Animating objects with 
requestAnimationFrame
In ActionScript you will have been using ENTER_FRAME 
events or a Timer to animate things. In JavaScript, tra-
ditionally you would have used either setInterval() 
or setTimeout(), which would look something like 
this:

Listing 5. xxxxxxxxxxxxx

FireParticle = function(x,y) {

  Particle.call( this, x, y );

  trace("this particle is a fire particle!")

}

 

FireParticle.prototype = new Particle();

FireParticle.prototype.constructor = FireParticle;

FireParticle.prototype.updatePhysics = function() {   

  /* update particle physics here */

}; 

Listing 6. xxxxxxxxx

//get reference to DOM element

var div = document.getElementById(“div1”); 

//add a MouseClick event

div.addEventListener(“click”, onClick, false); 

function onClick( ev ){

  trace(ev.target);

}



en.sdjournal.org 13

ActionScript to JavaScript: Finding your feet

setInterval( draw, 1000/30); //30 fps
function draw(){
  // draw stuff
}

Or this:

function draw() {
  setTimeout(draw, 100);
  // Drawing code goes here
}
draw();

The problem is that setTimeout()/setInterval() 
doesn’t know what else the browser is doing. The page 
could be minimised or hidden in a tab, using up process-
ing power when it doesn’t need to on some browsers.

Also, using these methods only updates the 
screen at a set rate, and if your animation frame rate is 
not in synchronised with the redrawing of your screen, it 
could take up more CPU. 

Not exactly efficient.
The requestAnimationFrame() function, which was 

proposed by Mozilla and later adopted by the WebKit 
vendors, provides a native API for running any type of 
animation in the browser – and that can be for DOM ele-
ments, CSS, canvas and so on.

This is the syntax:

function draw() {
  requestAnimationFrame(draw);
  // Drawing code goes here
}
draw();

Listing 7. xxxxxxxxx

https://gist.github.com/1579671

// http://paulirish.com/2011/requestanimationframe-for-smart-animating/

// http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating

 

// requestAnimationFrame polyfill by Erik Möller

// fixes from Paul Irish and Tino Zijdel

 

(function() {

  var lastTime = 0;

  var vendors = ['ms', 'moz', 'webkit', 'o'];

  for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) {

    window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame'];

    window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] 

    || window[vendors[x]+'CancelRequestAnimationFrame'];

    }

 

  if (!window.requestAnimationFrame)

    window.requestAnimationFrame = function(callback, element) {

      var currTime = new Date().getTime();

      var timeToCall = Math.max(0, 16 – (currTime – lastTime));

      var id = window.setTimeout(function() { callback(currTime + timeToCall); }, 

        timeToCall);

      lastTime = currTime + timeToCall;

      return id;

    };

 

  if (!window.cancelAnimationFrame)

    window.cancelAnimationFrame = function(id) {

      clearTimeout(id);

    };

}()); 



07/201214

xxxxxxxxx

Very much like the setTimeout() version but with 
requestAnimationFrame() instead, and no inter-
val rate, so the frame rate is down to the speed of the 
computer (and the capabilities of the browser). You 
can also pass an optional parameter along to the func-
tion that’s being called, such as the current element 
being animated. The browser is then able to draw 
when it can, rather than being forced to draw no mat-
ter what else it is doing.

It will also group all animations into a single “frame up-
date”, which will save processing power, with the idea 
that this is a much more mobile device friendly method.

The downside to requestAnimationFrame()? Its 
compatibility across browsers varies, and also, given it 
is a new standard, you also have to deal with “vendor 
prefixes” – e.g. webkitRequestAnimationFrame(). 
Also, you can forget about it when it comes to Internet 
Explorer – though it is supported in version 10.

Fortunately Paul Irish, Erik Moller and Tino Zijdel 
have come to the rescue with a “polyfill” ( a term used 
to describe code snippets/libraries that can make new 
features work in older browsers) that you can get from 
here. This script will make requestAnimationFrame() 
run across almost all browsers: Listing 7.

What about controlling the frame rate?
The only thing missing in the above code is how to 

throttle the frame rate to one of your choosing. Don’t 
worry, there is a way of doing that, and it’s by using 
setTimeout() as well. Here’s an example that will at-
tempt to draw at 30 frames per second, but with the 
advantage of requestAnimationFrame(), so it will 
only draw the new frame if it can, and also won’t go 
hogging resources if you’re on a different window or 
tab.

function draw() {
  setTimeout(function() {
    requestAnimationFrame(draw);
    // Drawing code goes here
  }, 1000 / 30);
}

Drawing with JavaScript
Up until the rise of HTML5 the only way to animate 
things with JavaScript was through the DOM (Docu-
ment Object Model), by moving HTML elements around 
the page. An interesting area of the HTML5 specifi-
cation for ActionScript developers is the new drawing 
APIs: Canvas, SVG, and WebGL. These provide bit-
map, vector, and three-dimensional drawing capabili-
ties, respectively.

The canvas element in particular will seem familiar 
to ActionScript developers. It’s a 2D drawable region 
where you can use JavaScript to draw and animate 

complex graphics and images. Given the close relation-
ship between JavaScript and ActionScript it’s not such 
a huge stretch to port Flash drawing code.

Canvas, SVG, and WebGL would all need a full ar-
ticle to do them justice, but suffice it to say I have found 
Canvas and WebGL (via the excellent Three.js library) 
to be very powerful. There are also some really inter-
esting polyfills out there, such as Flash Canvas: http://
flashcanvas.net, which emulates HTML5 canvas fea-
tures on earlier versions of Internet Explorer through … 
you guessed it.... Flash! 

In conclusion
So there you go. We’ve only scratched the surface, but 
as you can see JavaScript is very powerful if you take 
the time to learn its intricacies. It’s not such a huge step 
from ActionScript as it turns out, and if you tap into its 
Object Oriented Programming potential you will cer-
tainly glean the best of it, although it’s a shame there’s 
no type declaration and that the IDE’s aren’t up to the 
same level we’re used to with AS3. Equally there are 
many excellent libraries and polyfills out there to make 
life easier when it comes to dealing with the different 
versions of browsers.

The fact is that JavaScript is the only language used 
natively in the browser environment (that does not re-
quire a plugin), therefore it’s the de facto language of 
the web. If used properly you’ll be able to make very 
powerful and rich applications, and it’s certainly worth 
embracing this as the web shifts towards mobile devic-
es and browsers.

Richard England
Richard England is an award win-
ning freelance developer, who has 
worked with Flash technology for over 
ten years, building FWA winning sites, 
BAFTA-nominated games and interac-
tive learning resources.

He runs short HTML5 and JavaScript courses for NTI Leeds, 
teaching how to build web apps using open web technolo-
gies. His Twitter ID is @englandrp and he can be contacted at  
info@richardengland.co.uk.


